Finding Optimal Value for the Shrinkage Parameter in Ridge Regression via Particle Swarm Optimization

نویسندگان

  • Vedide Rezan Uslu
  • Erol Egrioglu
  • Eren Bas
چکیده

A multiple regression model has got the standard assumptions. If the data can not satisfy these assumptions some problems which have some serious undesired effects on the parameter estimates arise. One of the problems is called multicollinearity which means that there is a nearly perfect linear relationship between explanatory variables used in a multiple regression model. This undesirable problem is generally solved by using methods such as Ridge regression which gives the biased parameter estimates. Ridge regression shrinks the ordinary least squares estimation vector of regression coefficients towards origin, allowing with a bias but providing a smaller variance. However, the choice of shrinkage parameter k in ridge regression is another serious issue. In this study, a new algorithm based on particle swarm optimization is proposed to find optimal shrinkage parameter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

AN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION

This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...

متن کامل

PREDICTION OF EARTHQUAKE INDUCED DISPLACEMENTS OF SLOPES USING HYBRID SUPPORT VECTOR REGRESSION WITH PARTICLE SWARM OPTIMIZATION

Displacements induced by earthquake can be very large and result in severe damage to earth and earth supported structures including embankment dams, road embankments, excavations and retaining walls. It is important, therefore, to be able to predict such displacements. In this paper, a new approach to prediction of earthquake induced displacements of slopes (EIDS) using hybrid support vector re...

متن کامل

Particle swarm optimization for a bi-objective web-based convergent product networks

Here, a collection of base functions and sub-functions configure the nodes of a web-based (digital)network representing functionalities. Each arc in the network is to be assigned as the link between two nodes. The aim is to find an optimal tree of functionalities in the network adding value to the product in the web environment. First, a purification process is performed in the product network ...

متن کامل

Optimal Placement of Remote Control Switches in Radial Distribution Network for Reliability Improvement using Particle Swarm Optimization with Sine Cosine Acceleration Coefficients

Abstract: One of the equipment that can help improve distribution system status today and reduce the cost of fault time is remote control switches (RCS). Finding the optimal location and number of these switches in the distribution system can be modeled with various objective functions as a nonlinear optimization problem to improve system reliability and cost. In this article, a particle swarm ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014